Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell Rep Med ; 3(6): 100640, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-2285131

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific CD4+ T cells are likely important in immunity against coronavirus 2019 (COVID-19), but our understanding of CD4+ longitudinal dynamics following infection and of specific features that correlate with the maintenance of neutralizing antibodies remains limited. Here, we characterize SARS-CoV-2-specific CD4+ T cells in a longitudinal cohort of 109 COVID-19 outpatients enrolled during acute infection. The quality of the SARS-CoV-2-specific CD4+ response shifts from cells producing interferon gamma (IFNγ) to tumor necrosis factor alpha (TNF-α) from 5 days to 4 months post-enrollment, with IFNγ-IL-21-TNF-α+ CD4+ T cells the predominant population detected at later time points. Greater percentages of IFNγ-IL-21-TNF-α+ CD4+ T cells on day 28 correlate with SARS-CoV-2-neutralizing antibodies measured 7 months post-infection (⍴ = 0.4, p = 0.01). mRNA vaccination following SARS-CoV-2 infection boosts both IFNγ- and TNF-α-producing, spike-protein-specific CD4+ T cells. These data suggest that SARS-CoV-2-specific, TNF-α-producing CD4+ T cells may play an important role in antibody maintenance following COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , CD4-Positive T-Lymphocytes , Humans , Outpatients , T-Lymphocytes , Tumor Necrosis Factor-alpha
2.
Clin Infect Dis ; 75(1): e314-e321, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2188494

ABSTRACT

BACKGROUND: An immunodiagnostic assay that sensitively detects a cell-mediated immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed for epidemiological investigation and for clinical assessment of T- cell-mediated immune response to vaccines, particularly in the context of emerging variants that might escape antibody responses. METHODS: The performance of a whole blood interferon-gamma (IFN-γ) release assay (IGRA) for the detection of SARS-CoV-2 antigen-specific T cells was evaluated in coronavirus disease 2019 (COVID-19) convalescents tested serially up to 10 months post-infection and in healthy blood donors. SARS-CoV-2 IGRA was applied in contacts of households with index cases. Freshly collected blood in the lithium heparin tube was left unstimulated, stimulated with a SARS-CoV-2 peptide pool, and stimulated with mitogen. RESULTS: The overall sensitivity and specificity of IGRA were 84.5% (153/181; 95% confidence interval [CI]: 79.0-89.0) and 86.6% (123/142; 95% CI: 80.0-91.2), respectively. The sensitivity declined from 100% (16/16; 95% CI: 80.6-100) at 0.5-month post-infection to 79.5% (31/39; 95% CI: 64.4-89.2) at 10 months post-infection (P < .01). The IFN-γ response remained relatively robust at 10 months post-infection (3.8 vs 1.3 IU/mL, respectively). In 14 households, IGRA showed a positivity rate of 100% (12/12) and 65.2% (15/23), and IgG of 50.0% (6/12) and 43.5% (10/23) in index cases and contacts, respectively, exhibiting a difference of + 50% (95% CI: +25.4 to +74.6) and +21.7% (95% CI: +9.23 to +42.3), respectively. Either IGRA or IgG was positive in 100% (12/12) of index cases and 73.9% (17/23) of contacts. CONCLUSIONS: The SARS-CoV-2 IGRA is a useful clinical diagnostic tool for assessing cell-mediated immune response to SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoglobulin G , Interferon-gamma Release Tests , Sensitivity and Specificity
3.
Elife ; 112022 10 14.
Article in English | MEDLINE | ID: covidwho-2080852

ABSTRACT

Background: The great majority of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, there is substantial heterogeneity in SARS-CoV-2-specific memory immune responses following infection. There remains a critical need to identify host immune biomarkers predictive of clinical and immunological outcomes in SARS-CoV-2-infected patients. Methods: Leveraging longitudinal samples and data from a clinical trial (N=108) in SARS-CoV-2-infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients. We characterized the association between early immune markers and subsequent disease progression, control of viral shedding, and SARS-CoV-2-specific T cell and antibody responses measured up to 7 months after enrollment. We further compared associations between early immune markers and subsequent T cell and antibody responses following natural infection with those following mRNA vaccination. We developed machine-learning models to predict patient outcomes and validated the predictive model using data from 54 individuals enrolled in an independent clinical trial. Results: We identify early immune signatures, including plasma RIG-I levels, early IFN signaling, and related cytokines (CXCL10, MCP1, MCP-2, and MCP-3) associated with subsequent disease progression, control of viral shedding, and the SARS-CoV-2-specific T cell and antibody response measured up to 7 months after enrollment. We found that several biomarkers for immunological outcomes are shared between individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine and COVID-19 patients. Finally, we demonstrate that machine-learning models using 2-7 plasma protein markers measured early within the course of infection are able to accurately predict disease progression, T cell memory, and the antibody response post-infection in a second, independent dataset. Conclusions: Early immune signatures following infection can accurately predict clinical and immunological outcomes in outpatients with COVID-19 using validated machine-learning models. Funding: Support for the study was provided from National Institute of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) (U01 AI150741-01S1 and T32-AI052073), the Stanford's Innovative Medicines Accelerator, National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) DP1DA046089, and anonymous donors to Stanford University. Peginterferon lambda provided by Eiger BioPharmaceuticals.


Subject(s)
COVID-19 , Humans , Antibodies, Viral , Biomarkers , BNT162 Vaccine , Cytokines/metabolism , Disease Progression , RNA, Messenger , SARS-CoV-2 , Clinical Trials as Topic
4.
Med (N Y) ; 3(6): 371-387.e9, 2022 06 10.
Article in English | MEDLINE | ID: covidwho-1783640

ABSTRACT

Background: COVID-19 manifests with respiratory, systemic, and gastrointestinal (GI) symptoms.1, SARS-CoV-2 RNA is detected in respiratory and fecal samples, and recent reports demonstrate viral replication in both the lung and intestinal tissue.2, 3, 4 Although much is known about early fecal RNA shedding, little is known about long-term shedding, especially in those with mild COVID-19. Furthermore, most reports of fecal RNA shedding do not correlate these findings with GI symptoms.5. Methods: We analyzed the dynamics of fecal RNA shedding up to 10 months after COVID-19 diagnosis in 113 individuals with mild to moderate disease. We also correlated shedding with disease symptoms. Findings: Fecal SARS-CoV-2 RNA is detected in 49.2% [95% confidence interval, 38.2%-60.3%] of participants within the first week after diagnosis. Whereas there was no ongoing oropharyngeal SARS-CoV-2 RNA shedding in subjects at 4 months, 12.7% [8.5%-18.4%] of participants continued to shed SARS-CoV-2 RNA in the feces at 4 months after diagnosis and 3.8% [2.0%-7.3%] shed at 7 months. Finally, we found that GI symptoms (abdominal pain, nausea, vomiting) are associated with fecal shedding of SARS-CoV-2 RNA. Conclusions: The extended presence of viral RNA in feces, but not in respiratory samples, along with the association of fecal viral RNA shedding with GI symptoms suggest that SARS-CoV-2 infects the GI tract and that this infection can be prolonged in a subset of individuals with COVID-19. Funding: This research was supported by a Stanford ChemH-IMA grant; fellowships from the AACR and NSF; and NIH R01-AI148623, R01-AI143757, and UL1TR003142.


Subject(s)
COVID-19 , Communicable Diseases , Gastrointestinal Diseases , COVID-19/diagnosis , COVID-19 Testing , Feces , Gastrointestinal Diseases/diagnosis , Humans , Lung , RNA, Viral/genetics , SARS-CoV-2/genetics
5.
Clin Infect Dis ; 74(5): 821-828, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1705432

ABSTRACT

BACKGROUND: Although mRNA-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines report >90% efficacy, breakthrough infections occur. Little is known about their effectiveness against SARS-CoV-2 variants, including the highly prevalent B.1.427/B.1.429 variant. METHODS: In this quality improvement project, we collected demographic and clinical information from post-vaccine SARS-CoV-2 cases (PVSCs), defined as healthcare personnel (HCP) with positive SARS-CoV-2 nucleic acid amplification test after receiving ≥1 vaccine dose. Available specimens were tested for L452R, N501Y, and E484K mutations using reverse-transcription polymerase chain reaction. Mutation prevalence was compared among unvaccinated, early post-vaccinated (≤14 days after dose 1), partially vaccinated (positive test >14 days after dose 1 and <14 days after dose 2), and fully vaccinated (>14 days after dose 2) PVSCs. RESULTS: From December 2020 to April 2021, ≥23 090 HCP received ≥1 dose of an mRNA-based SARS-CoV-2 vaccine, and 660 HCP cases of SARS-CoV-2 occurred, of which 189 were PVSCs. Among the PVSCs, 114 (60.3%), 49 (25.9%), and 26 (13.8%) were early post-vaccination, partially vaccinated, and fully vaccinated, respectively. Of 261 available samples from vaccinated and unvaccinated HCP, 103 (39.5%), including 42 PVSCs (36.5%), had the L452R mutation presumptive of B.1.427/B.1.429. When adjusted for community prevalence of B.1.427/B.1.429, PVSCs did not have significantly elevated risk of B.1.427/B.1.429 compared with unvaccinated HCP. CONCLUSIONS: Most PVSCs occurred prior to expected onset of full, vaccine-derived immunity. Presumptive B.1.427/B.1.429 was not more prevalent in post-vaccine cases than in unvaccinated SARS-CoV-2 HCP. Continued infection control measures, particularly <14 days post-vaccination, and continued variant surveillance in PVSCs are imperative to control future SARS-CoV-2 surges.


Subject(s)
COVID-19 , SARS-CoV-2 , Academic Medical Centers , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Delivery of Health Care , Humans , Incidence , SARS-CoV-2/genetics , Vaccination
6.
Diagn Microbiol Infect Dis ; 102(3): 115612, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1536510

ABSTRACT

Although the vast majority of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections are uncomplicated, our understanding of predictors of symptom resolution and viral shedding cessation remains limited. We characterized symptom trajectories and oropharyngeal viral shedding among 120 outpatients with uncomplicated Coronavirus Disease of 2019 (COVID-19) enrolled in a clinical trial of Peginterferon Lambda, which demonstrated no clinical or virologic benefit compared with placebo. In the combined trial cohort, objective fever was uncommon, inflammatory symptoms (myalgias, fatigue) peaked at 4 to 5 days postsymptom onset, and cough peaked at 9 days. The median time to symptom resolution from earliest symptom onset was 17 days (95% confidence interval 14-18). SARS-CoV-2 IgG seropositivity at enrollment was associated with hastened resolution of viral shedding (hazard ratio 1.80, 95% confidence interval 1.05-3.1, P = 0.03), but not with symptom resolution. Inflammatory symptoms were associated with a significantly greater odds of oropharyngeal SARS-CoV-2 RNA detection; respiratory symptoms were not. These findings have important implications for COVID-19 screening approaches and trial design.


Subject(s)
COVID-19 , Humans , Outpatients , RNA, Viral , SARS-CoV-2 , Virus Shedding
7.
Clin Infect Dis ; 73(3): e826-e829, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338689

ABSTRACT

To assess the prevalence of persistent functional impairment after coronavirus disease (COVID-19), we assessed 118 individuals 3-4 months after their initial COVID-19 diagnosis with a symptom survey, work productivity and activity index questionnaire, and 6-minute walk test. We found significant persistent symptoms and functional impairment, even in non-hospitalized patients with COVID-19.


Subject(s)
COVID-19 , Pandemics , COVID-19 Testing , Humans , SARS-CoV-2 , Surveys and Questionnaires
8.
Nat Commun ; 12(1): 1967, 2021 03 30.
Article in English | MEDLINE | ID: covidwho-1159789

ABSTRACT

Type III interferons have been touted as promising therapeutics in outpatients with coronavirus disease 2019 (COVID-19). We conducted a randomized, single-blind, placebo-controlled trial (NCT04331899) in 120 outpatients with mild to moderate COVID-19 to determine whether a single, 180 mcg subcutaneous dose of Peginterferon Lambda-1a (Lambda) within 72 hours of diagnosis could shorten the duration of viral shedding (primary endpoint) or symptoms (secondary endpoint). In both the 60 patients receiving Lambda and 60 receiving placebo, the median time to cessation of viral shedding was 7 days (hazard ratio [HR] = 0.81; 95% confidence interval [CI] 0.56 to 1.19). Symptoms resolved in 8 and 9 days in Lambda and placebo, respectively, and symptom duration did not differ significantly between groups (HR 0.94; 95% CI 0.64 to 1.39). Both Lambda and placebo were well-tolerated, though liver transaminase elevations were more common in the Lambda vs. placebo arm (15/60 vs 5/60; p = 0.027). In this study, a single dose of subcutaneous Peginterferon Lambda-1a neither shortened the duration of SARS-CoV-2 viral shedding nor improved symptoms in outpatients with uncomplicated COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Interleukins/administration & dosage , Polyethylene Glycols/administration & dosage , Adult , Aged , COVID-19/virology , Female , Humans , Injections, Subcutaneous , Male , Middle Aged , Outpatients , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Single-Blind Method , Treatment Failure , Virus Shedding/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL